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Bridge ties bind collective memories
Ida Momennejad1,2,3, Ajua Duker1,4 & Alin Coman1

From families to nations, what binds individuals in social groups is, to a large degree, their

shared beliefs, norms, and memories. These emergent outcomes are thought to occur

because communication among individuals results in community-wide synchronization. Here,

we use experimental manipulations in lab-created networks to investigate how the temporal

dynamics of conversations shape the formation of collective memories. We show that when

individuals that bridge between clusters (i.e., bridge ties) communicate early on in a series of

networked interactions, the network reaches higher mnemonic convergence compared to

when individuals first interact within clusters (i.e., cluster ties). This effect, we show, is due to

the tradeoffs between initial information diversity and accumulated overlap over time. Our

approach provides a framework to analyze and design interventions in social networks that

optimize information sharing and diminish the likelihood of information bubbles and

polarization.
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Social interactions are crucial to communities that engage in
coordinated behavior. These interactions constitute the
means through which beliefs, memories, and norms become

shared across communities. They can facilitate the spread of
information about healthy behaviors1, change negative norms2,
and enable large-scale cooperation3. On the other hand, inter-
actions within homophilous social clusters4 give rise to infor-
mation bubbles5 and political polarization6,7, and have the
potential to disrupt optimal collective behavior8,9. Exploring the
impact of social interactions on large-scale phenomena has
recently led to significant advances in understanding the forma-
tion of collective memories10,11. Despite these advances, we know
very little about the dynamical processes involved in the
community-wide synchronization of memories (i.e., collective
memories). Here, we show experimentally that the temporal
sequence of conversations in social networks impacts the degree
to which communities converge on a shared memory of the
past. This investigation has the potential to illuminate phenom-
ena that are directly dependent on a network’s collective mem-
ories, such as the mobilization of collective identity6,7 and
collective behavior8,9, and to highlight how the interplay between
micro-level cognitive processes and the structural and temporal
features of social networks can give rise to large-scale social
phenomena1,12.

We build on the extensive psychological research showing
that once an event is encoded by an individual, its memory
is malleable13–15. It is subject to cognitive transformations,
such as forgetting and distortion16, and susceptible to social
influences17,18. Due to this malleability, conversationally
remembering the past often leads to the synchronization
of memories between interacting partners19. When these
dyadic-level influences are part of a larger network of social
interactions, collective memories emerge10,17,20,21. In order to
understand the community-level synchronization of memories,
current theoretical models point to the need to develop a fra-
mework that captures both how an individual's memories are
shaped in social interactions, as well as how features of the social
network that characterize the community’s interactions impact
the formation of collective memories22–24. Since collective
memories are dependent on the cognitive operations of the
individuals who comprise the community, we aim to explore how
repeated recollections in a social setting affect people’s memories
of an experienced event25. At a network level, we investigate how
the temporal sequencing of conversations in the social network
affects the degree of convergence that the community reaches.
Imagine a situation in which a community of individuals
experiences a public event through mass-media exposure (e.g., the
September 11 attacks). They then start communicating with one
another about the information they acquired about the event. We
are interested here in understanding how convergent the com-
munity’s memories become following these conversations and
how this convergence is influenced by the temporal nature that
characterizes the community’s interactions.

Previous research has found that the influence that one indi-
vidual exerts over another can propagate through the network
and impacts the degree to which communities converge on a
similar memory of an experienced event. This research has
shown, for instance, that networks characterized by clusters that
are highly connected with one another form more convergent
collective memories than networks comprised of sparsely con-
nected clusters. This is because connections between clusters
allow for information to propagate through the network, which
synchronizes the community members’ memories10. Not all
individual members are, however, equally influential in their
potential to affect the collective memory of the larger network.
Individuals who connect between clusters (i.e., bridge ties) have a

significant influence in the network26,27. No research to date has
experimentally explored how these ties facilitate the formation of
collective memories across a social network, a gap that we intend
to address herein.

Crucially, social interactions within communities unfold over
time. Depending on the sequential order of conversations, a
“bridge tie” may never get the chance to impact the network,
especially if it occurs after the community had already engaged in
extensive interactions in isolated clusters. Most previous investi-
gations use static topological mappings to showcase the impact of
bridge ties26. In contrast with these approaches, we use a tem-
poral network framework to understand when “bridge tie” con-
versations should take place to maximally impact the convergence
of memories across the community28,29. To do so, we experi-
mentally manipulate the temporal order of “bridge tie” and
“cluster tie” conversations in lab-created networks. We
then measure how this manipulation impacts the formation of
collective memories.

Our hypothesis is that if participants who are connected
through a bridge tie discuss memories of a commonly experi-
enced event early on, they will facilitate widespread mnemonic
convergence in the network. This is because the dyadic-level
synchronization between the individuals who bridge between
clusters will influence the subsequent conversations within the
clusters. In contrast, early alignment between individuals within
each cluster (i.e., cluster ties) should lead to less mnemonic
convergence across the community. This is because conversations
among individuals within clusters continuously reinforce their
cluster’s memories in a way that makes these memories less
sensitive to influences from neighboring clusters in subsequent
conversations across the clusters. To test this hypothesis, we
conducted a laboratory experiment in which we kept the topo-
logical properties of conversational networks constant across
experimental conditions (i.e., all nodes have the same degree,
closeness centrality, betweenness centrality, and eigenvector
centrality) and only manipulate the temporal order of conversa-
tions within these networks (i.e., link order). This temporal order
is manipulated such that the first round of conversations occurs
either on bridge ties (the Bridge Ties First condition) or on cluster
ties (the Cluster Ties First condition) (Fig. 1).

One hundred and ninety-two participants enrolled in the study
through Princeton University’s recruitment system. They were
assigned to 16-member communities, here defined as clusters of
interconnected individuals within a social network (Fig. 1). All
participants completed the experimental procedure on lab com-
puters. In the study phase (phase 1), participants read a story that
contained 30 critical items16. Then, in the pre-conversational
recall phase (phase 2), they individually recalled the studied
information. In the conversational recall phase (phase 3), each
participant in the 16-member network engaged in a series of four
anonymous dyadic conversations (each with a different partner),
during which they were instructed to jointly remember the stu-
died materials. Conversations took the form of interactive
exchanges in a chat-like, computer-mediated environment in
which participants typed their recollections. Finally, in the post-
conversational recall phase (phase 4), they individually recalled
the initially studied information once again (Fig. 2).

In the conversational recall phase, each participant engaged in
a sequence of four 150 s conversations. In the Bridge Ties First
condition (n= 96 participants; six 16-member networks), the
conversational sequence began with interactions between indivi-
duals who belonged to different pre-determined clusters (i.e.,
bridge tie). In the Cluster Ties First condition (n= 96 partici-
pants; six 16-member networks), the first conversation occurred
between individuals who were part of the same pre-determined
cluster (i.e., cluster tie). The second and third conversations took
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place within clusters in both conditions (cluster ties), while the
fourth conversation again differentiated between the Bridge
Ties First condition, in which participants now communicated
within the cluster, and the Cluster Ties First condition, in which
participants communicated between clusters (Figs. 1 and 2).

Participants were assigned to their position in clusters randomly
and did not have knowledge of the structure of the network.

For our dependent measures, we computed scores that quan-
titatively captured the formation of collective memory in the
community. We refer to these scores as mnemonic convergence
scores when they involve the entire community (of 16 partici-
pants) and mnemonic similarity scores when they involve only
sub-sections of the community. To compute these scores, we
adapted the procedure established by Coman et al.10. Each per-
son’s memory was individually measured once before the con-
versational rounds started and once after all conversational
rounds were completed. At each of these two time-points, a
participant’s memory was measured in terms of free recall of 30
items from the story they had read. The recalls were oper-
ationalized as a vector with 30 slots corresponding to the 30 stu-
died items. For each element of the memory vector, a value of 1
indicated that an item was recalled and 0 indicated that the item
was not recalled (see Supplementary Methods). Using these
vectors, we first calculated a mnemonic similarity score for each
pair of participants within a network by dividing the number of
items the two participants remembered in common by the total
number of items (of the 30) that either participant in the pair
remembered11. As a hypothetical example, if participant A
remembered items 1 and 2 and participant B remembered items 2
and 4 from a 4-item stimulus set, then their mnemonic similarity
score is 0.33, computed as the division of 1 (item remembered in
common) by 3 (total items remembered by either participant in
the pair). Using these pairwise mnemonic similarity scores, we
computed: (a) a global-level mnemonic convergence score by
averaging the mnemonic similarity scores across all pairs of
participants in the network and (b) local-level average mnemonic
similarity scores by averaging the mnemonic similarity scores
depending on the positions of the participants in the network: (i)
within-cluster mnemonic similarity by averaging the mnemonic
similarity scores of participants who were part of the same cluster
(e.g., participants in cluster a in Fig. 1), (ii) neighboring-cluster
mnemonic similarity by averaging the mnemonic similarity scores

Cluster a
Neighboring: b, d
Distant: c

Cluster d
Neighboring: a, c
Distant: b

Cluster tie

Cluster b
Neighboring: a, c

Distant: d

Cluster c
Neighboring: b, d

Distant: a

Bridge ties

a

b

Fig. 1 A graphic summary of bridge ties (red), cluster ties (black), and
clusters. For each cluster, its neighboring and distant clusters are shown.
Mnemonic convergence is measured across the entire 16-member network.
Average mnemonic similarity is measured (1) within cluster (among the
four members of that cluster), (2) between a cluster and its neighboring
cluster (e.g., cluster a and cluster b), and (3) between a cluster and its
distant neighbor cluster (e.g., cluster a and cluster c)

Phase 1:
study

(individual)

Phase 2:
recall test
(individual)

Phase 4:
recall test
(individual)

Phase 3: conversations
(dyads)

1

2

16

1

2

16

1
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Bridge ties first condition

Round 1 Round 2

Round 1 Round 2

Round 3

Round 3

Round 4

Round 4

Cluster ties first condition

Fig. 2 Phases of the experimental procedure. Each experimental session had four phases. In phase 1, all 16 participants that comprised a lab-created
community studied the material (see Supplementary Methods) alone, and in phase 2 (as in phase 4), each participant engaged in individual free recall by typing
their recollections on the computer. In phase 3, the nodes represent 16 participants and the edges represent conversations between two individuals. The order
of the conversations in phase 3 depended on the condition: in the Bridge Ties First condition participants have their first conversation across clusters, whereas in
the Cluster Ties First condition they have their first conversation within clusters. The Keyboard image is from http://icons8.com. All rights reserved
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of non-interacting participants who belonged to adjacent clusters
(e.g., participants from cluster a and participants from cluster b in
Fig. 1), and (iii) distant-cluster mnemonic similarity by averaging
the mnemonic similarity scores of participants who belonged to
non-adjacent clusters (e.g., participants from cluster a and par-
ticipants from cluster c in Fig. 1). These measures were computed
separately for the pre-conversational and post-conversational
recalls. A mnemonic convergence (and mnemonic similarity)
score of 0 indicates that participants remembered nothing in
common, while a score of 1 indicates perfect overlap among
participants.

Results
Dynamics of mnemonic convergence. To explore whether the
temporal sequence of conversations impacts the emergence of

collective memories, we first compared the mnemonic con-
vergence scores in the two conditions. Consistent with our
hypothesis, we found that the mnemonic convergence increased
from pre- to post-conversation to a larger degree in the Bridge
Ties First condition than in the Cluster Ties First condition
(Fig. 3a). That is, Bridge Ties First communities reached more
convergent collective memories than Cluster Ties First commu-
nities. This pattern, we argued, is due to the fact that bridge ties
lead to the increased mnemonic similarity among individuals who
belong to connected clusters over time. In order to investigate this
claim we compared the neighboring-cluster similarity scores
between the two conditions. We used a score of mnemonic
similarity change by subtracting the average mnemonic similarity
of the pre-conversational recalls from the post-conversational
average mnemonic similarity scores.
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Fig. 3 Mnemonic similarity and convergence scores. a The increase in mnemonic convergence from pre-conversation to post-conversation was larger in
the Bridge Ties First condition (M= 0.22; SD= 0.03) than in the Cluster Ties First condition (M= 0.18; SD= 0.03), t(10)= 2.21, p= 0.052, Cohen’s d=
1.28, confidence interval (CI) [0.00, 0.07]. b The increase in mnemonic similarity from pre- to post-conversation was larger in the Bridge Ties First
condition than in the Cluster Ties First condition for participants who were part of the same cluster (MBridgeTies= 0.27, SDBridgeTies= 0.02 vs. MClusterTies=
0.21; SDClusterTies= 0.03; t(10)= 3.43, p= 0.006, Cohen’s d= 2.10, CI [0.02, 0.09]) and marginally significant for participants in neighboring clusters
(MBridgeTies= 0.21, SDBridgeTies= 0.04 vs. MClusterTies= 0.17; SDClusterTies= 0.03; t(10)= 2.11, p= 0.061, Cohen’s d= 1.11, CI [0.00, 0.08]), but not for
those in distant clusters (p= 0.39). All comparisons involve independent-sample t-tests. In this figure, boxplots show interquartile range (box), mean
(black line within interquartile range), and data range (vertical lines)
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We found support for our prediction that bridge ties affect
network-wide mnemonic convergence by aligning the memories
of individuals who are part of neighboring clusters. In the Bridge
Ties First condition, participants’ memories were more similar to
members of their neighboring cluster than in the Cluster Ties
First condition (Fig. 3b). We predicted no difference between the
two conditions in distant-cluster similarity, because in both
conditions the influence of one participant over another’s
memories can only propagate into the neighboring cluster and
no further. Indeed, the mnemonic similarity change was not
statistically different between the Bridge Ties First and the Cluster
Ties first conditions for distant cluster comparisons (Fig. 3b).

Differences in information diversity and accumulated overlap.
As to the alignment of memories among within-cluster partici-
pants, two possibilities emerge. The first possibility builds on the
assumption that within-cluster participants in the Cluster Ties
First condition might align their memories in the first round.
They then continually rehearse these memories in subsequent
rounds, thus forming locally convergent memories resistant to
influence from neighboring clusters in the last round. This
account would predict a larger increase in within-cluster mne-
monic similarity in the Cluster Ties First condition than in the
Bridge Ties First condition. An alternative possibility, consistent
with the collaborative learning literature30,31, is that this early
consolidated alignment in the Cluster Ties First condition might
be perturbed by the introduction of information from neigh-
boring clusters in the final round. As each member of the cluster
aligns with a different “outsider” in the final conversational
round, the cluster may diverge from their locally formed collec-
tive memory in different directions. This latter account would
predict less within-cluster average similarity in the Cluster Ties
First compared to the Bridge Ties First condition. Indeed, we find

support for the latter hypothesis, with the Cluster Ties First
condition reaching less within-cluster average similarity than the
Bridge Ties First condition (Fig. 3).

As mentioned, we conjecture that this pattern of results is
driven by the temporal dynamics of information diversity and
accumulated overlap that the clusters experience during the
different rounds of conversational remembering. To illustrate,
imagine a four-member group that discusses (in sequential dyadic
interactions) an event previously experienced by each member
from their unique perspectives. Initially, the different members of
the group might introduce in their discussions information that
pertains to their unique perspectives (high information diversity).
As subsequent conversations unfold, these unique items are
integrated into their individual memories and thus become
shared among all the members of the four-member group
(accumulated overlap). We propose that the two conditions,
Bridge Ties First and Cluster Ties First, exhibit different dynamics
of information diversity and accumulated overlap as follows. In
round 1 of the Bridge Ties First condition, each participant had a
conversation with an individual from another cluster (see Fig. 4a).
Thus, eight individuals contributed to the pool of items
collectively recalled by the cluster in round 1. As a consequence,
in this round, the pool of items that the cluster remembered
collectively should be characterized by high information diversity
(i.e., number of items remembered in at least one, but no more
than three conversations of the participants in the cluster) and
low accumulated overlap (i.e., number of items remembered in all
conversations of participants who form a cluster). In contrast, in
round 1 of the Cluster Ties First condition, the collective pool of
information within a cluster should be characterized by low
information diversity and high accumulated overlap, because
their round 1 interactions occur within the cluster and only
four individuals contribute to the cluster’s collective pool of
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Fig. 4 Memory overlap and memory diversity indices. a For each cluster (designated with the dotted line), we compared vectors corresponding to
information that came up in conversations of each of its four members (participants P1 through P4). Some of these conversations were within cluster, and
some were between a cluster member and an “outsider” (red figures). For each round, a cluster’s overlap index indicated the number of items (out of the
30 studied items) that came up in conversations of all members (highlighted with the blue box), while the diversity index indicated the number of items
that were mentioned in at least one but no more than three conversations (highlighted with the orange box). b The dynamics of the overlap and diversity
indices, by round, separate for the Bridge Ties First (red) and Cluster Ties First (black) conditions. A repeated-measures analysis of variance (ANOVA)
revealed that the interaction between Time and Condition is significant for both the overlap [F(3, 8)= 11.76, η2= 0.81, p= 0.003] and the diversity
[F(3, 8)= 31.53, η2= 0.92, p= 0.001] indices, with post-hoc independent-sample t-tests indicating significant differences between the Bridge and Cluster
Ties First conditions in both Round 1 (Overlap: t(10)= 4.97, d= 2.89, confidence interval (CI) [1.52, 3.98], p < 0.001; Diversity: t(10)= 7.69, d= 4.46, CI
[5.39, 9.78], p < 0.001) and round 4 (Overlap: t(10)= 4.08, d= 2.41, CI [2.48, 8.43], p < 0.002; Diversity: t(10)= 7.34, d= 4.28, CI [6.71, 12.54], p <
0.001). Error bars represent standard deviation around the mean
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information. In round 4, the opposite pattern should occur, with
the Cluster Ties First condition experiencing an increase in
information diversity (and decrease in accumulated overlap) due
to the final interactions with participants outside the cluster, and
the Bridge Ties First condition experiencing a decrease in
information diversity (and increase in accumulated overlap) due
to repeated interactions within the cluster.

To test this hypothesis, we computed two indices that
characterize the information that is available to each cluster: an
information diversity index and an information overlap index. For
each participant within a cluster, and for each conversational
round, we constructed a 30-item vector to capture the informa-
tion produced in his/her conversation. Because each cluster
involves four participants, there were four vectors that went into
the computation, one for each participant. If an item (among the
30 initially studied) was present in all four vectors, it was
designated as an overlap item. The total number of overlap items
constituted the information overlap index for the cluster. If an
item was present in at least one vector, but in no more than three
vectors, it was designated as a diversity item (Fig. 4a). The total
number of diversity items constituted the information diversity
index for the cluster. These indices were computed for each
cluster and then averaged across the four clusters in a network.

Consistent with our conjecture, we found that in the Bridge
Ties First condition, the information was initially (round 1) less
overlapping and more diverse than in the Cluster Ties First
condition. As participants engaged in subsequent conversations,
this dynamic reversed, such that information brought up in the
last round was more diverse and had a lower overlap score in the
Cluster Ties First condition than in the Bridge Ties First
condition. This dynamic, we argue, resulted in higher within-
cluster alignment in the Bridge Ties First condition, but had the
opposite effect in the Cluster Ties First condition, where the
information that was introduced in round 4 had no time to be
integrated and discussed within the cluster (Fig. 4b). It is worth
noting that the prediction derived from this explanation is that
additional rounds of within-cluster conversations (i.e., round 5
and on) in both conditions should result in an increase in the
overlap index and decrease in the diversity index, since
information is continuously entered into the common pool of
items that are conversationally reinforced.

Discussion
In this paper we offer a framework for quantifying the temporal
dynamics involved in the formation of collective memories in
social networks. We have shown experimentally, for the first time,
that individuals who bridge network clusters have a strong
influence on the emerging collective memory in lab-created net-
works. The approach developed here provides a significant
advance in our understanding of these emergent outcomes. We
show that the same network topology can give rise to different
convergent collective memories, depending on the temporal
sequencing of conversations.

The literature on collective memory would benefit from sys-
tematic investigations of the impact of network characteristics on
the dynamical transformation of collective memories32. We are
only beginning to understand how the malleability of human
memory impacts the formation of collective memories. There are a
multitude of factors that could interact with the temporal and
topological features of social networks to give rise to collective
memories. At a psychological level, people’s attitudes33, the per-
ceived similarity among interacting participants34,35, and the
medium in which interactions take place (online vs. face to face)36

likely play a role in the synchronization dynamics involving social
groups. For instance, in our current investigation participants

interacted with one another in computer-mediated interactions
that involved turn-taking. Even though the experimental situation
we created is representative of today’s social media landscape
(e.g., Twitter, Facebook), it is likely that face-to-face conversa-
tions in which social cues are much more salient would result in
different outcomes. More research is needed, thus, into how face-
to-face conversations might affect large-scale phenomena differ-
ently than computer-mediated interactions. Our conjecture is that
the more social information the participants have of one another,
the more pronounced the social influence processes will be. More
specifically, similarity cues would facilitate social influence, while
dissimilarity cues would diminish social influence, relative to
control conditions in which little or no social information is
provided.

Further investigations into how the topological and temporal
features of social networks affect the formation of collective
memories are certainly worthwhile. One such investigation could
explore the critical bridge width (i.e., the length of the chain that
bridges between two clusters) at which collective memories are
still affected by the temporal sequencing of conversations. Indeed,
in real-world communities, bridges among clusters are oftentimes
of widths larger than 137. At what width would one expect the
influence of bridge ties to be eliminated? Previous studies suggest
that the social influence from one individual to another does not
spread more than 3 degrees away from the originating source10,36,
which might constitute the upper limit at which the critical bridge
width can still affect mnemonic convergence. Another potential
extension of the current work involves establishing whether social
influences on memory involve simple contagions (one source
necessary for memory change) or complex contagions (multiple
sources necessary for memory change). The answer to this
question could reveal the types of networks most conducive to the
formation of highly convergent collective memories1,10,12,38. In
this context, varying the number of bridge ties between clusters in
larger networks would provide more nuanced answers to ques-
tions about the optimal connectivity among clusters that would
facilitate the formation of collective memories.

Given observed topological and temporal features of the
community’s interactions, one could easily make predictions
about how convergent their collective memories will become.
Being able to make these predictions is of tremendous impor-
tance, given that the collective memory a network reaches could
predict a host of large-scale phenomena, from information bub-
bles5, to political polarization6,7, and to collective behavior8,9. It is
worth noting that in most real-world circumstances, communities
are more likely to resemble the Cluster Ties First condition, with
initial conversations taking place within clusters, and only sub-
sequent conversations reaching outside the cluster. There are
situations, however, when control could be exercised over the
temporal sequence of social interactions (e.g., study groups in
educational settings, sequencing of meetings in organizations,
etc.). One could design these interactions to optimize for desired
outcomes, such as mnemonic convergence, information homo-
geneity and diversity, and recall accuracy.

We focused on how communities come to hold a collective
memory of an emotionally neutral event that all participants
experienced. We made the decision to restrict the experimental
situation to this setting in order to rigorously isolate the variables
that are of interest to this investigation. In their day-to-day lives,
however, people often encounter emotionally charged events, the
propagation of which might be modulated by motivated rea-
soning processes. Based on previous research, we conjecture that
emotion should facilitate the propagation of social influence in
networks in a way that would increase community-wide con-
vergence39. If one experiences an emotional reaction when wit-
nessing an event, then one is more likely to relay it to another
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individual, which in turn would facilitate convergence pro-
cesses40. This propagation-convergence association would be
influenced, however, by people’s prior beliefs, memories, and
motivations. That is, groups of similar-minded individuals might
perceive an event through the prism of their identity in a way that
makes them converge on a similar memory of the past. These
motivational biases could lead rival groups to converge on dif-
ferent memories of the same event, as famously shown in pre-
vious research32,33. Oftentimes, these biases create a context for
communities to converge on inaccurate information41. In the
current investigation, the rate of memory distortion was very low,
which limits the conclusions one could draw based on these data.
However, systematic experimental manipulations involving (i)
slightly different events across community members, (ii) ambi-
guity of the experienced event, and (iii) the different motivations
of the community members will likely reveal meaningful
dynamics involving the formation of false collective memories.

Ultimately, understanding collective cognition will clarify
social phenomena that underlie significant challenges of our
times: information bubbles. Highly clustered networks, in which
individuals reinforce their memories in repeated within-cluster
interactions, lead to fragmented collective memories. This, in
turn, could produce information bubbles, largely because the
different factions rarely exchange information to reach common
ground38. Our proposed approach can help strategically optimize
information ecosystems for maximal knowledge acquisition and
efficient community organization. These predictions would pro-
vide the grounding for interventions to avoid information bubbles
and to reduce the spread of misinformation in social networks.

Methods
Participants. A total of 192 students (123 female, mean age 21.83 years, SD= 3.97)
affiliated with Princeton University took part in the study voluntarily for either
research credit or compensation. The stopping rule for participant recruitment was
established based on the effect size obtained in a previous study that used aggregate
measures of collective memory in networks10. A sample size of 12 networks was
deemed adequate to obtain an effect size of Cohen’s d= 1 for the planned between-
condition comparisons. The relatively small sample size needed to reveal an effect
is due to the fact that the aggregation procedure involves averaging over all pair-
wise scores within each network (i.e., 120 scores per network), which drastically
reduces the standard deviation and standard error in each condition. No partici-
pants were excluded from analyses. They were grouped into twelve 16-member
networks and went through the study in a Princeton computer lab, which contains
visually partitioned computers. The participants interacted anonymously through
the software SoPHIE (Software Platform for Human Interaction Experiments); they
were from a wide range of fields of study, which made it unlikely that any subject
would know more than one other person in the room. In total, 12 sessions were
conducted, each involving a 16-person network in a between-network design:
participants in 6 networks were in the Bridge Ties first condition (96 participants)
and the remaining 6 networks were in the Cluster Ties first condition (96 parti-
cipants). Assignment of network to condition was random. All subjects gave
informed consent for the protocol, which was approved by Princeton University’s
Institutional Review Board.

Stimuli. Using the Qualtrics survey paradigm, we presented participants with a
story taken from ref. 16. The 30-item story contains information about two boys
who skip school and visit one of the boy’s house. Even though the story was
initially designed to contain items relevant for two cognitive schemas (i.e., real-
estate mindset vs. burglar mindset), our manipulation did not involve the activa-
tion of these schemas. We used this story because it has been widely employed in
psychological investigations of memory in individual-level studies and, as a con-
sequence, a well-established coding scheme has been already developed.

Design and procedure. Participants signed up for the study through Princeton
University’s online recruitment system. Each session was conducted with 16 par-
ticipants who went through the experimental procedure together. Participants
within each network were physically present in the same room and carried out the
study on the designated computer terminals throughout. In the study phase,
participants initially studied the story for a fixed amount of time. They were told
that their memory will be tested in a later phase. Then, in a pre-conversational
recall phase, participants were asked to individually remember as much as they
could about the initially presented information. After this phase, participants took
part in a sequence of conversations for which they were instructed to jointly

remember the initially studied materials (conversational recall). These computer-
mediated chat conversations took place in dyads, such that each participant in a
16-member cluster engaged in a sequence of 4 interactions, each lasting for 150 s.
Participants did not know the identity of their chat partners and merely saw an
assigned avatar that indicated the uniqueness of their conversation partner in each
round. The conversations were characterized by turn-taking, with virtually all
conversational recall instances involving collaboration between the interacting
partners. Of note, both participants who engaged in a conversation saw the con-
versation as it unfolded on the screen and were able to scroll to any point of the
conversation they wished. A qualitative analysis of the conversations revealed that
all of the participants stayed on task throughout the duration of the study and
engaged in collaboratively remembering the initially studied materials, as
instructed. Following the conversational recalls, participants were instructed to
once again individually recall the initially studied story. For both the pre- and post-
conversational recalls, the participants were given as much time as needed to type
their recalls; the recall time ranged between 4 and 8 min across participants.

For the conversational recall phase, we manipulated the network structure of
the conversational interactions as illustrated in Fig. 2. A software platform was
specifically designed for this project to allow for fluent computer-mediated
interactions among participants (i.e., SoPHIE). We kept the number of participants
and the number of conversations in which each participant was engaged constant
across the two conditions. The only difference between the two conditions was the
sequencing of conversational recall sessions. In the Bridge Ties first condition
(6 networks), the first conversation occurred between participants who were part of
different clusters, while in the Cluster Ties first condition (6 networks), the first
conversation took place between participants who were part of the same cluster.
Each conversation lasted for 150 s; the preliminary studies showed that it provided
ample time for information to be exchanged. A final recall test followed the
conversational phase (post-conversational recall).

Coding of all of the recall protocols was performed by a research assistant who
was blind to the study’s hypotheses and involved a binary system in which an item
was labeled as either remembered or not remembered. The coding scheme
followed the designation employed in the original study by Anderson and
Pichert16 for 30 predefined memory items included in the story
(see Supplementary Methods). For each item, a score of 1 indicated that it was
remembered and 0 indicated that the item was not recalled. Items were coded for
“gist” recall, meaning that the participant did not need to recall each scoring unit
verbatim in order for it to count. For example, although a scoring unit on the scale
reads “The basement is damp”, if a participant mentioned a “soggy cellar,” the unit
was counted as remembered. Due to this gist-based coding, we had very few recall
distortions in the data (<1%) and we coded these distortions in a gist-based
consistent manner, with recall units that contained egregious errors not being
counted as recalled (e.g., “there was a TV” when in fact “there was a stereo”) and
minimal errors were counted as correctly remembered (e.g., “there was a
computer” instead of the studied item: “there was a laptop”). As such, each
participant’s recall during each phase could be captured in a 30-item recall vector
with 0 and 1 scores. Ten percent of the data were double-coded for reliability
(Cohen's κ= 0.84). The double coding was performed by research assistants who
were also blind to the hypotheses of the study. The 3- to 5-min distracter tasks, in
which participants completed unrelated questionnaires, were inserted between any
two phases described above.

Reporting Summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All data associated with this study is available on an open data platform [https://osf.io/
fxky4/?view_only=ededdaf259e74523a59c08e9716aa025].
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