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a b s t r a c t 

Effective public health measures must balance potentially conflicting demands from populations they 

serve. In the case of infectious disease risks from mosquito–borne infections, such as Zika virus, public 

concern about the pathogen may be counterbalanced by public concern about environmental contamina- 

tion from chemical agents used for vector control. Here we introduce a generic framework for modeling 

how the spread of an infectious pathogen might lead to varying public perceptions, and therefore toler- 

ance, of both disease risk and pesticide use. We consider how these dynamics might impact the spread 

of a vector-borne disease. We tailor and parameterize our model for direct application to Zika virus as 

spread by Aedes aegypti mosquitoes, though the framework itself has broad applicability to any arboviral 

infection. We demonstrate how public risk perception of both disease and pesticides may drastically im- 

pact the spread of a mosquito-borne disease in a susceptible population. We conclude that models hoping 

to inform public health decision making about how best to mitigate arboviral disease risks should explic- 

itly consider the potential public demand for, or rejection of, chemical control of mosquito populations. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

The role humanity has taken as the ecosystem engineers of

he environment in which we live is vast and complex. Making

nowledge-based decisions to effectively influence our world ne-

essitates the simplification of vastly interconnected systems into

otentially manageable pieces. Frequently, these simplifications al-

ow us to formulate plans in aid of targeted agendas, but then

equire consideration of their impact with respect to other unex-

lored dimensions. To be of actual help to policy makers, scientific

ractice must isolate and establish best practices for each desired
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oal for a given system, and then consider how best to balance

ultiple goals or constraints within the larger system without too

rastically compromising those best practices. In the most chal-

enging cases, the desired goals may be directly at odds with each

ther. Further complicating attempts to engineer appropriate solu-

ions is the dynamic nature of demand for each goal over time.

ublic concern regarding, and therefore demand for safety from,

nfectious diseases led to the development of effective vaccines

hich were released without much concern for acceptance; in the

950s parents in the United States were more scared of polio than

f the potential side effects of a polio vaccine and there were rel-

tively few challenges to vaccine uptake ( Baicus, 2012 ). However,

ver time (and in no small part due to the success of vaccines

hemselves removing exposure to the experience of widespread

utbreaks), the salient risks perceived by some parents began to

https://doi.org/10.1016/j.jtbi.2020.110161
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Fig. 1. Diagram. A schematic depicting elements included in our model: patches 

(i.e. city blocks) and their inter-connectivity, human density, juvenile and adult 

mosquito abundance, and application of insecticides. 
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shift away from fear to the observable consequences of disease

outbreaks to fear of vaccines themselves. This has led to increas-

ing rejection of vaccination programs and the recurrence of out-

breaks of preventable childhood illnesses ( Gangarosa et al., 1998;

Dubé et al., 2015; Dredze et al., 2016; Blume, 2006 ). This single ex-

ample highlights how differences in perception of relative risk can

drive public demand for science to address its concerns in different

ways. 

Of course, vaccination programs focus on conflicts between two

different potential health risks in direct opposition to each other

(i.e. illness from the disease and side effects of the vaccine), but

as with agriculture and erosion, or transportation and habitat frag-

mentation, efforts to manage public health risks can involve dras-

tically different realms. Just as others have considered how public

concern might impact policy interventions for vaccination ( Bauch

and Earn, 2004; Sharma et al., 2019; Brewer et al., 2007 ), in this

paper, we will consider how shifting perceptions of risk may com-

plicate the management of mosquito-borne infections in the con-

text of concern for perceived environmental or public health risks

from the application of pesticides. 

As members of the public become aware of risks from the

spread of newly emerging or reemerging infections there is a pat-

tern of increased regional demand for public health agencies and

policy makers to enact strategies to decrease risks of infection. One

of our first and best lines of defense against dangerous vector-

borne diseases such as dengue, Zika virus, and West Nile virus is

to decrease the population of mosquitoes that act as the vector for

transmission of infection to humans ( Townson et al., 2005; Sikka

et al., 2016 ). 

Most mosquito control efforts rely on chemical treatment of the

environment to decrease either survival of adult mosquitoes (i.e.

via adulticides) or growth of their juveniles (i.e. via larvicides). The

chemical pesticides used each have their own level of potential en-

vironmental effect beyond the targeted mosquito populations (in

the case of the arboviral diseases mentioned, the target species

are Aedes albopictus, Aedes aegypti , and Culex pipiens , but differ-

ent vector-borne diseases involve targeting the appropriate vector

and therefore incur their own insecticidal impacts). Historic con-

trol measures that targeted only mosquito populations accidentally

posed direct health risks to humans (and the environment) from

exposure to the chemicals used (e.g. malaria control using DDT;

( Roberts et al., 1997; Hindrik et al., 2011; Henk, 2009 )). Further, in-

creased awareness of the fragility of insect biodiversity has led to

public concern for non-human impacts from vector control effort s

( Bonds, 2012; Bartlett et al., 2018; Fourrier et al., 2015 ). Although

not all of these risks are associated with modern vector man-

agement strategies, especially when specifically targeted to limit

transmission of Zika virus, public concern is likely to be shaped by

gestalt awareness of harm from historical efforts, rather than lim-

ited to specific, exact measures ( Morriss and Meiners, 2002; Gam-

ble et al., 2010; Dhitinut Ratnapradipa PhD et al., 2015 ). 

While these factors are already incredibly challenging, they are

also embedded in a spatial and social landscape. Mosquito ecology,

disease epidemiology, human population density, access to health-

care, perception of risks from outbreaks, concern for the environ-

ment, and even the municipal regions under the control of local

public health, environmental protection, and vector control agen-

cies are all affected by the features/actions of neighboring habitats

and cities. Decisions are not made in isolation and the impacts

from each management action can alter both the perceptions of

risk and actual risk for neighboring regions. The responses by in-

dividuals may run counter to or in concert with existing regional

plans. In a recent study in Ecuador, where active nationally co-

ordinated city-level vector control operates through ultra-low vol-

ume (ULV) spraying, households were found to be spending around

10% of their income on personal abatement (including aerosols, liq-
id sprays, repellents, mosquito coils and unimpregnated bed nets)

 Heydari et al., 2017 ). This points to a trade-off, or interplay be-

ween the scales at which abatement decisions are made, and the

ypes of vector abatement used. The perception of personal agency

nd risk mitigation provides a backdrop to actionable decisions in

he balance between personal protection against vector-borne dis-

ase and environmental contamination. 

We therefore consider a simplified model in which risk percep-

ion of a vector-borne disease outbreak, and therefore demand for

osquito control, is driven by a spatially explicit level of awareness

f disease incidence. We incorporate a concern for environmental

ontamination that waxes and wanes as compared to the concern

or disease mitigation. Using this model, we explore questions such

s what is the effect on outbreak duration if concern is low ver-

us high; what is the rate/pace at which abatement use increases

iven low or high severity of disease impact itself. In Section 2 we

escribe the details of the model and the meaning of each vari-

ble and parameter. We analyze the behavior of the variables as a

unction of time in Section 3.1 , and the stationary state for differ-

nt combination of parameters in Section 3.2 . Final remarks can be

ound in Section 4 . 

. Model 

Our motivation is to analyze the interplay between the per-

eived level of threat from the infection and the willingness of the

itizens to demand the usage of pesticides for vector control, to

heir municipalities. In order to achieve this, we developed a math-

matical model that includes the most relevant aspects of this sys-

em. The model comprises N patches, each of which is occupied by

 vector population (mosquitoes) and a host population (humans).

 schematic of the elements in this model is depicted in Fig. 1 . To

et a better understanding of the model behavior, we first stud-

ed system-level dynamics of the model within an isolated patch

results in Appendix A ). 

In this model, the human population can be in any of the fol-

owing three states: susceptible to infection by the virus ( S H ), in-

ected ( I H ), or recovered ( R H ), meaning that the individual can not

et infected again. We also include terms that take into account
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Table 1 

Initial conditions for each patch. Both susceptible populations are 

initialized by selecting a random number from a uniform distri- 

bution within the interval specified. 

Variable Description Initial Value 

S H 
j 

Susceptible Humans ∈ [700; 800] 

I H 
j 

Infected Humans 1 in a random patch 

R H 
j 

Recovered Humans 0 

D H 
j 

Severe Outcomes 0 

L M 
j 

Mosquitoes Larvae 0 

S M 
j 

Susceptible Mosquitoes ∈ [1200; 1300] 

I M 
j 

Infected Mosquitoes 0 

C M 
j 

Mosquitoes control 0 

C L 
j 

Larvae control 0 

 

 

 

 

 

 

m  

r  

t  

t  

i  

v  

p  

s  

a  

e  

a  

p  

p  

t  

r  

c

 

s  

l  

t  

b  

c

α

u  

f  
he natural birth rate ( b H ) and death rate ( μH ) of people. The

osquito population is divided in the following categories: juve-

ile mosquitoes that are not infected and cannot transmit the virus

 L M ), adult mosquitoes that are not infected with the virus but are

usceptible to infection ( S M ), and infected adult mosquitoes ( I M )

hat can transmit the pathogen by biting susceptible people. βH 

nd βM are the rates at which susceptible people and mosquitoes

ecome infected, respectively. An important characteristic of the

odel is the function accounting for the limited carrying capac-

ty for larvae in each patch f (M, K j ) = M(1 − (M/K j )) where K j is

he maximum carrying capacity for patch j and M = S M + I M is the

otal number of adult mosquitoes that can lay eggs. The larvae

ransition to susceptible adult mosquitoes at rate ν . Finally, adult

osquitoes die at rate μM . 

We can imagine that each patch represents an average city

lock of a US suburban area (although generalizations of the same

odel with more appropriate parameter choices would be appli-

able to other regions). Because of this, the human population is

llowed to move from any patch to any other patch randomly,

iven that a person can travel from and to any house. The flux of

eople moving from patch i to patch j is expressed in the equa-

ions as the element m i,j , where m i,i = 0 and 

∑ N 
j=1 m i, j = p, where

 is the probability of travelling. On the contrary, it is known that

osquitoes (and specifically Aedes ) seldom travel large distances

uring their lifetimes (maximum flight range is usually reported at

0 m ~ 100 m but potentially much further at the extreme end of

he distribution) ( Reiter et al., 1995; Harrington et al., 2005 ). As a

esult, in our model the vectors can only move within the patch

n which they are born, and the spread of the disease from one

atch to another is determined by human mobility only. Within a

atch disease is spread by infected mosquitoes which bite suscep-

ible people. Each block has an initial population of S 0 
j 

humans, so

he total initial population of the system is S 0 = 

∑ N 
j=1 S 

0 
j 
. 

A final key feature of this model is that people can demand

or control methods, like adulticides and larvicides, to be applied

n their own block or patch. The amount of control measures ap-

lied, in this model equivalent to the strength in the demand of

he population, increases with the number of infected people in

ach patch. The demand for control is represented by C M 

j 
for adult

osquito control, and C L 
j 

for larval control. We assume that learn-

ng about infected individuals in the area will produce a fear of

nfection, which in turn will trigger the decision to demand action

rom the authorities. The model includes a percentage of severe

utcomes that have a larger impact in the reaction to the disease

han typical infected cases. On the other hand, the use of large

uantities of pesticides can produce a state of fear in the popu-

ation producing the opposite effect. Concern over the perceived

ublic health risks of contaminants in the water and their own en-

ironment could discourage the demand for control measures from

he authorities. Even if the pesticides utilized are innocuous for the

nvironment, there can be negative public response out of fear of

ossible side effects. Though unfounded, these can still meaning-

ully compromise attempts to control the vectors, in this case the

edes aegypti mosquito. 

We propose a modified version of the Ross-Macdonald equa-

ions ( Ross, 1911a; 1911b; MacDonald, 1950a; 1950b; 1957 ), to de-

cribe the dynamics of the spread of a vector-borne disease in a

aive population, taking into account the idea of environmental

oncern over the use of pesticides for mosquito control, hereafter

eferred to as “environmental concern”. Reflecting the particular

ase of Zika virus in Aedes aegypti , we construct a set of equations

or each patch. So, for a given patch j we have, 

d S H 
j 

d t 
= b H H j − βH I M 

j S H j − μH S H j + 

∑ 

i 

m i j S 
H 
i − S H j 

∑ 

i 

m ji (1)
d I H 
j 

d t 
= βH I M 

j S H j − rI H j − μH I H j − ω 

H I H j + 

∑ 

i 

m i j I 
H 
i − I H j 

∑ 

i 

m ji (2)

d R 

H 
j 

d t 
= rI H j − μH R 

H 
j + 

∑ 

i 

m i j R 

H 
i − R 

H 
j 

∑ 

i 

m ji (3)

d D 

H 
j 

d t 
= δI H j (4) 

d L M 

j 

d t 
= f (η(S M 

j + I M 

j ) , K j ) − νL M 

i − C L j L 
M 

j (5)

d S M 

j 

d t 
= νL M 

i − βM I H j S 
M 

j − μM S M 

j − C M 

j S M 

j (6)

d I M 

j 

d t 
= βM I H j S 

M 

j − μM I M 

j − C M 

j I M 

j (7)

d C M 

j 

d t 
= αM D 

H 
j + γ M I H j − εM C M 

j (8) 

d C L 
j 

d t 
= αL D 

H 
j + γ L I H j − εL C L j (9) 

Table 1 describes the variables in the model and values of the

odel parameters are shown in Table 2 . Here, a unit of time rep-

esents one day. Note that Eqs. (1)–(4) represent the dynamics of

he human population, and Eqs. (5)–(7) include the dynamics for

he mosquito population. (For simplicity, we ignore the possibil-

ty of vertical transmission in the vector.) In Eqs. (8) and (9) , the

ariables C M 

j 
and C L 

j 
indicate the amount of pesticides applied in

atch j to control the adult mosquitoes and larvae populations, re-

pectively. Both variables depend on the number of infected cases

nd severe outcomes inside each patch, and they decrease due to

nvironmental concern, proportional to the amount of pesticides

pplied. We assume a linear dependence between the amount of

esticides applied and the environmental concern. The constant of

roportionality is εM for adult mosquitoes and εL for larvicides. If

hese parameters are large enough, meaning that many people are

eluctant to demand insecticidal control, the size of the epidemic

an increase considerably. 

For simplicity, we assume that γ M = γ L = γ , where γ repre-

ents the general strength of the control measures applied, regard-

ess if we are considering larval or adult mosquitoes. In this inves-

igation, we are going to make the simplified assumption that they

ehave in the same way, but this is done so in future models this

ondition can be relaxed. Similarly, we fix the values, 

M = αL = 100 γ , (10) 

nder the assumption that one severe outcome (e.g. such as in-

ant microcephaly from Zika virus infection) has an effect on the
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Table 2 

Constant coefficients. We use the same values for each patch, except for the carrying capacities which may vary between patches. (Note: 

Assumed rates were chosen to reflect incidence and mortality outcomes observed in early Zika outbreaks reported in South America, 

however, their accuracy will not affect our results since our focus is on model scenario comparison and these rates were held constant 

across all scenarios.). 

Parameter Description Value Reference 

βH Transmission rate for humans 1 . 5 × 10 −4 assumed 

βM Transmission rate for mosquitoes 3 . 0 × 10 −4 assumed 

μH Natural death rate for humans (8.6/1000)/365 ( central, 2017 ) 

μM Natural death rate for mosquitoes 1/13 ( Stone et al., 2017 ) 

b H Human birth rate (9/1000)/365 ( Ellington et al., 2016 ) 

r Human recovery rate 0.037 ( Gao et al., 2016 ) 

ω 

H Human death rate from disease 0 assumed 

δ Composite rate 190/3, 474, 182 ( Ellington et al., 2016 ) 

ν Maturation rate 1/7 ( Stone et al., 2017 ) 

η Egg laying rate 10 ( Stone et al., 2017 ) 

p Fraction of people that travel 0.2 assumed 

αM Mosquito control motivation due to infected cases or severe outcomes variable 

αL Larvae control motivation due to infected cases or severe outcomes variable 

εM Environmental concern demotivates mosquito pesticides usage variable 

εL Environmental concern demotivates larvae pesticide usage variable 

K j Larvae carrying capacity for each patch variable 

Fig. 2. Scenario with low environmental concern and high control strength. (Colour online) Example of a combination of parameters that leads to a small outbreak of the disease, 

where the environmental concern levels are low and the demand for control measures is high. Parameters: N = 100; p = 0.2; environmental concern: εM = εL = ε = 10 ; 

control strength due to infected cases: γ M = γ L = γ = 0 . 95 ; control strength due to severe outcomes: αM = αL = 100 γ . Each blue line represents the results obtained for 

the ground case, and each red line corresponds to the results for this particular combination of parameters γ and ε. A line for each patch has been plotted; however, most 

of the lines overlap. Inset in panel (b) is a zoom in the region where the red lines are significant. 
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population’s perception of threat similar to a hundred regular in-

fected cases. Finally, εM = εL = ε represents the general environ-

mental concern. After these assumptions, Eqs. (8) and (9) can be

rewritten as, 

d C M 

j 

d t 
= γ (100 D 

H 
j + I H j ) − ε C M 

j (8 

∗)

d C L 
j 

d t 
= γ (100 D 

H 
j + I H j ) − ε C L j . (9 

∗)

We can now use γ and ε as the main parameters to describe

and analyze a number of different possible scenarios. Note that

Eqs. (8 ∗) and (9 ∗) , are simply special cases of Eqs. (8) and (9) , and

we will solve the original equations, for this specific combination

of parameters. 

3. Results 

3.1. Dynamics of the model 

We solve the system of differential Eqs. (1)–(9) using an explicit

Runge–Kutta (4,5) formula, based on the Dormand-Prince pair, de-

tailed in Shampine and Reichelt (1997) . 
The simplest choice of combination of parameters is the case

here no control measures are applied and, because of that, the

esults are independent of the level of environmental concern in

he population. This will be our ground case and it will be used as

 benchmark against which to compare all other combinations of

arameters. In Figs. 2–4 , each blue line represents the results ob-

ained for the ground case, and each red line corresponds to the

esults with a combination of non-zero parameters γ and ε. A line

or each patch has been plotted; however, because the dynamic of

he epidemic are very similar in each patch, most of the lines over-

ap. In Fig. 2 we show the results for a combination of parameters

ith low environmental concern and high demand for control. Un-

er this conditions the epidemic only spans over a small fraction of

he population (less than 10%). Each plot shows the temporal de-

endence of one variable on the system of Eqs. (1)–(9) . In this case

e set model parameters to reflect a strong motivation to demand

ontrol measures γ = 0 . 95 , and low environmental concern ε = 10 .

nder these conditions, approximately only 10% of the population

ets infected, although the outbreak persists for 2.4 times longer

han the ground case (see inset of Fig. 2 ( b )). We see that, once

he control measure begins, it increases rapidly and stays high un-



G.P. Suarez, O. Udiani and B.F. Allan et al. / Journal of Theoretical Biology 490 (2020) 110161 5 

Fig. 3. Scenario with high environmental concern and low control strength. (Colour online) Example of a combination of parameters that leads to an epidemic outcome of the 

disease, where the environmental concern levels are high and the demand for control measures is low. Parameters: N = 100; p = 0.2; environmental concern: εM = εL = ε = 

200 ; control strength due to infected cases: γ M = γ L = γ = 0 . 1 ; control strength due to severe outcomes: αM = αL = 100 γ . Each blue line represents the results obtained 

for the ground case, and each red line corresponds to the results for this particular combination of parameters γ and ε. A line for each patch has been plotted; however, 

most of the lines overlap. 

Fig. 4. Scenario with intermediate values of environmental concern and control strength. (Colour online) Example of a combination of parameters that leads to an epidemic 

outcome of the disease, where the environmental concern levels and the demand for control measures take intermediate values. Parameters: N = 100; p = 0.2; environmental 

concern: εM = εL = ε = 130 ; control strength due to infected cases: γ M = γ L = γ = 0 . 5 ; control strength due to severe outcomes: αM = αL = 100 γ . Each blue line represents 

the results obtained for the ground case, and each red line corresponds to the results for this particular combination of parameters γ and ε. A line for each patch has been 

plotted; however, most of the lines overlap. 
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il the end of the simulation, since there is no reason to decrease

esticide usage. 

On the contrary, if we select a low motivation to demand pesti-

ides, and a stronger environmental concern, we find that the con-

rol measures are not sufficient to stop the outbreak (see Fig. 3 ).

y the end of the simulation 100% of the population is affected,

ecause the effort s made to control the vector population were in-

ufficient. Under these conditions, the dynamic of the outbreak is

ery similar to the one obtained from the ground case. The peak in

pplied control measures corresponds to the peak in infected indi-

iduals. However, the residual impact on perceived risk from se-

ere outcomes continues to influence the demand for control even

hen the numbers of infections decrease. 

There is also an interesting middle ground in which both pa-

ameters take intermediate values. As shown in Fig. 4 , the frac-

ion of recovered people at the end of the simulation is quite large

over 80%), but the fraction of infected individuals remains lower
han the ground case (the peak of infected individuals is only 1/3

f the control case, Fig. 4 (b)). The duration of the outbreak in this

ntermediate case is 1.8 times longer than the ground case. Even

hough the final number of recovered individuals is high (over

0%), this scenario may be considered preferable from a public

ealth standpoint. Compared to the case shown in Fig. 3 , which

lso affects the entire population, there are fewer simultaneous in-

ected cases. This could allow municipal authorities more time to

ake preventive measures and ensure medical infrastructure is not

verwhelmed by the number of simultaneous active cases. 

In Eqs. (8 ∗) and (9 ∗) we assumed that one severe outcome has

n impact on the population’s perception of threat similar to a

undred infected cases, see Eq. (10) . Of course, this is an estima-

ion of average risk perception across the population. In reality,

isk perception will likely be both different for every person and

ifficult to measure. The effect of this parameter can be seen in

anels (b), (e) and (f), of Figs. 2–4 . In those plots we can clearly
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Fig. 5. Phase space exploring the trade off between environmental concern and control strength. N = 100; p = 0.2 (fraction of human mobility). (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 
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distinguish two different behaviors: at the beginning of the simu-

lation, the demand for control measures increases proportionally to

the number of infected cases; when the number of infected peo-

ple reaches its maximum, we see a concomitant maximum in the

strength of control measures. After the number of infected peo-

ple goes back to zero, the cumulative number of severe outcomes

remains constant, given that there are no new cases and there-

fore the strength of control measures applied also remains con-

stant (since it is proportional to the number of severe cases). If

we modify the relative effect that one severe outcome has on the

perception of risk compared to the number of infected cases in

Eq. (10) , this will change the final constant value of the control

strength, after the peak number of infected cases has passed. 

3.2. Interplay between vector control and environmental concern 

We can explore the complete space of ( γ , ε) parameters and

plot the fraction of recovered people at the end of the simulation

to assess the size of the outbreak. In Fig. 5 we see how different

combinations of these two parameters lead to very different out-

comes. In Fig. 5 (a) we show the fraction of individuals in the re-

covered state, at the end of the simulation. For a fixed value of

the control strength γ , the fraction of recovered individuals in-

creases when the environmental concern ε increases. In contrast,

for a fixed value of the environmental concern, the size of the out-
reak decreases when the control strength increases. Finally, we

an see that if both parameters, γ and ε, are increased propor-

ionally the fraction of recovered people remains constant. 

The left column of Fig. 5 (a) represents the state of the system

ithout any control measures, and thus, there is no environmental

oncern about the use of pesticides. If we move horizontally in

ig. 5 (a) increasing the strength of the control measures with no

nvironmental concern (bottom row) we see that the outbreak can

e stopped, even for small values of γ . This is due to the fact that

he variables that represent the control measures C M 

j 
and C L 

j 
are

onotonically increasing functions when ε = 0 . As we increase the

nvironmental concern, the size of the epidemic becomes larger

ecause the strength of control measures decreases when the

umber of infected cases is lower. When this is the case, it reflects

hat people are more concerned about exposure to pesticides than

xposure to infection. We can think of this plot as the number

f cases averted, given that in the ground case the fraction of

nfected people is 1. It is easy to estimate the fraction of people

ho did not get infected in scenarios with any other combination

f parameters. 

In Fig. 5 (b) we can see the maximum fraction of infected indi-

iduals reached, i.e. the maximum value recorded for simultaneous

nfected individuals at any time in the simulation. We can mea-

ure the values in this plot by finding the maximum value of the
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urves on plots Figs. 2 ( b ), 3 ( b ) or 4 ( b ), for the whole space param-

ter. Limiting this quantity may be important due to throughput

apacity for provision of adequate medical care. Fig. 5 (c) shows the

uration of the outbreak (in days) for different combination of pa-

ameters. It is clear from this plot that increasing control measures

nd decreasing environmental concern creates outbreaks of longer

uration. When combining these results, we see the importance

f keeping the environmental concern low. From Fig. 5 (b), we see

hat when the environmental concern increases, the number of si-

ultaneous infected people increases. From Fig. 5 (a) we see that,

hen this happens, the faction of recovered individuals is higher,

nd from Fig. 5 (c) we see that the outbreak is of shorter duration,

reating a scenario with a large number of infected people at the

ame time, and limiting the time available to react. 

. Conclusion 

In this paper we presented a mathematical model that ex-

ends standard epidemiological models for vector-borne disease

ynamics to consider both the public demand for protection from

osquito-borne illness, and a simultaneous public concern about

he environmental impacts of that protection. While still a highly

implified model, we demonstrated how public risk perception

ay impact the spread of a mosquito-borne disease in a naive

opulation. Critically, our model provides a method for estimat-

ng the public health costs (i.e. the additional preventable cases

f disease) associated with increased strength of public environ-

ental concern (i.e. resistance to mosquito control efforts), even

hough the observed disease incidence was assumed to reinforce

he public perception of health risks from infection, itself leading

o demand for vector control. Although this study falls far short of

roviding all of the answers needed by policy makers, it provides a

eaningful advance in consideration of the practical constraints in

arnering public acceptance of vector-control interventions to mit-

gate the risks of outbreaks. Our hope is that these models may

elp guide planning and investment in public outreach and educa-

ion campaigns that address not only the relevant infection risks,

ut also the risks from vector control itself. 

There are, of course, many additional features of potential im-

ortance to public risk perception that our model does not explic-

tly address. For example, how the public is informed of the risks

rom exposure to both infectious pathogen and chemical pesticides

ay meaningfully shape the perception of these relative risks. This
 t

ig. A.6. One isolated patch. Black line is the solution to Eqs. (1) to (9) for N = 1 patc

nvironmental concern: εM = εL = ε = 130 ; control strength due to infected cases: γ M 

nterpretation of the references to colour in this figure legend, the reader is referred to th
ay in turn have a drastic impact on demand for, or rejection of,

osquito control strategies. Similarly, our model included direct

bservation of severe outcomes from infection but did not include

xplicit, observable negative outcomes to pesticide exposure. Inclu-

ion of such effects in future studies will help shape explicit rec-

mmendations for policy makers who must address public concern

bout the methods used for mitigation of arboviral risks while still

chieving effective outbreak control. 
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h. The results from Fig. 4 are included in blue for easy comparison. Parameters: 

= γ L = γ = 0 . 5 ; control strength due to severe outcomes: αM = αL = 100 γ . (For 

e web version of this article.) 
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Fig. A.7. Very limited mobility. Solution to Eqs. (1) to (9) for N = 100 patches and fraction of people allowed to move from one path to another p = 10 −7 . The black lines 

represent the results for the patch with the first infected patient. With a rate p = 10 −7 people can move to any other patch. The red lines represent the results for all 

the other patches. Finally, the results from Fig. 4 are included in blue for easy comparison. Parameters: environmental concern: εM = εL = ε = 130 ; control strength due to 

infected cases: γ M = γ L = γ = 0 . 5 ; control strength due to severe outcomes: αM = αL = 100 γ . (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 
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Appendix A. Model behavior for an isolated patch and very low

mobility 

For comparison, we include the outcome of our model for the

case of a single isolated patch. In Fig. A.6 we can see the result of

solving Eq. (1) to Eq. (9) , using the same combination of parame-

ters in Fig. 4 for the case of one patch. The black line is the result

obtained for one isolated patch, the blue lines correspond to the

results showed in Fig. 4 . The general trend is similar to the one

found using a fully connected network of N = 100 patches. Even

though there is a shift in the time dependence, the final levels of

infected and recovered people remains the same. 

Also we compare the case with very limited mobility between

patches, i.e. p → 0. In this conditions, it takes more time for the

disease to get to a neighboring patch. However, because all the

patches are one step away from each other, the outbreak can still

reach all other patches at the same time (see Fig. A.7 ). The black

line corresponds to the results obtained for the patch with the first

infected person. With a very small rate p = 10 −7 , people can travel

to neighboring patches. The red lines are the results obtained for

all other patches. Once all the patches have infected individuals,

the dynamics are similar to those when using larger values of p ,

but shifted in time. he results from Fig. 4 , with p = . 2 , were in-

cluded for comparison. 
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